
Meeting Latency and Jitter Demands of
Beyond 5G Networking Era: Are CNFs Up
to the Challenge?

Adil Bin Bhutto1 Ryota Kawashima2 Yuzo Taenaka1
Youki Kadobayashi1

1Nara Institute of Science and Technology, Japan
2Nagoya Institue of Technology, Japan

Contact: Adil Bin Bhutto<adil-b@ieee.org>

July 4th, 2024

Points
1 Summary

Goal

• Explore the latency, jitter, and bandwidth characteristics of CNFs.

Idea

• Focus on CPU Power and Frequency Scaling Configurations.

Result

• Insight for predictable low latency/jitter and high throughput.

1/20

Table of Contents
2 Introduction

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

2/20

Compute Inter Connect for Beyond 5G
2 Introduction

 FPGA

CPU

GPU
TPU

ASIC

Figure: Compute-Inter-Connect platform with heterogeneous technologies.1

1
Chafii, M., Bariah, L., Muhaidat, S., & Debbah, M. (2023). Twelve scientific challenges for 6G: Rethinking the foundations of communications theory. IEEE Communications Surveys & Tutorials, 25(2), 868-904.

Note: The figure depicted here is a modified version taken from this publication.

2/20

Evolving Network Functions
2 Introduction

Physical Network Functions (PNF) Virtual Network Function (VNF) Containerized Network Function (CNF)

Network Address Translator (NAT)

Firewall (FW)

Traffic Monitoring (TM)

Video Optimization Controller (VOC)

Intrusion Detection Prevention System (IDPS)

Powered by dedicated hardware and software
FAD9D5NAT FAD9D5NAT FAD9D5FW

FAD9D5FW FAD9D5VOC FAD9D5TM

FAD9D5TM FAD9D5IDPS FAD9D5VOC

FAD9D5NAT FAD9D5VOC FAD9D5IDPS

FAD9D5FW FAD9D5TM FAD9D5FW

Powered by function application software

Virtual machines

Containerized microservices

Powered by multiple disaggregated microservices

ProxyNetwork Service

 Higher Performance

 Higher Flexibility
 ASIC, FPGA CPU, GPU

Network Slicing

Compute Inter Connect
(CIC) Fabric

Service Chaining

Edge Computing

Ease of Deployment

Multitenancy

Greener Life Cycle

End-to-End Latency
Jitter

Low Bandwidth

Figure: Evolving Network Functions
3/20

Containerized Network Functions
2 Introduction

Why CNF?
1. Agility

• Lightweight • Fast spin-off time
2. Portability

• Open standards •Wide adoption
3. Resource efficiency
4. Supporting ECO-System

/

usr bin home

src bin local iplab

doc img wrk

doc/

usr lib lib64 bin

cp bash ls

. . .

Kubernetes: A distributed platform with
distinct control and data plane components
positioning itself as OS of the Cloud.

. . .

● Chroot ● Cgroups ● Namespaces

C
on

ta
in

er

H
os

t O
S

Figure: Container architecture and its orchestration.4/20

Network I/O Acceleration and Virtualization
2 Introduction

NIC

TargetL2Fwd-DPDK
DPDK-TestPMD
OVS DPDK
xDpd-DPDK
Lagopus
Libmoon

VALE

OVS
Linux Bridge

SR-IOV Vhost-userVhost-net
(Hardware virtualization)

NAPI NetmapDPDK

U
se

r S
pa

ce

(a
) P

ac
ke

t I
/O

 A
rc

hi
te

ct
ur

e

 K
er

na
l S

pa
ce

C
on

ta
in

er

HOST

(c) Virtual Network I/O (on the Host)

(b) Forwarding engines (in the Container)

NIC NIC

L2Fwd-DPDK
DPDK-TestPMD
OVS DPDK
xDpd-DPDK
Lagopus
Libmoon

VALE

OVS
Linux Bridge

HOST

(b) Forwarding engines (on the Host)

NIC

(A) Containerized Network Function (B) Network Function on Bare-metal

Figure: Performance acceleration and vNet I/O technologies.

Why DPDK?
! Polling mode
! User space driver
! Core affinity
! Optimized memory
! Network virtualization
! Cloud native acceleration

5/20

Table of Contents
3 CPU Configuration and CNF

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

6/20

Why Focus on CPU P&C States?
3 CPU Configuration and CNF

P-States (Performance States)
p
Operating Frequency Control

p
Voltage Control

• Advantages
+ Dynamic performance scaling
+ Energy Efficiency
+ Thermal management

• Disadvantages
� Potential performance impact
� Transition latency

C-States (Idle States)
p
Turns off Parts of CPU

p
Manage Power Consumption

• Advantages
+ Power savings
+ Extended battery life
+ Reduced heat generation

• Disadvantages
� Wake-up latency
� Power management complexity
� Potential performance penalty

6/20

CPU P&C State in CNF
3 CPU Configuration and CNF

Effect of P&C states on Container

• CPU behavior impacts container
performance.

• Dynamic frequency scaling!
Unpredictable process execution speed

• Idle CPUs take longer to wake up and
run processes.

Containerised
Application 1

Container Engine

Host OS

Hardware [CPU + ...]

CPU Configurations (P&C States)

Containerised
Application 1

Uses

Runs on

Manages

Figure: Relation between containerized application and CPU
P&C states.

7/20

Table of Contents
4 Our Study

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

8/20

Goal
4 Our Study

Understand the correlation between CNF performance and P&C Sate of modern CPU.

Address the possibility of using CNF in latency-sensitive applications.

8/20

Approach
4 Our Study

Exhaustive Experiments and Analysis
• 10 Experiments+ 152 Evaluations
• DPDK powered packet generation and
forwarding CNF

• + Variable packet sized
+ Variable packet rates
+±PC

• Real H/W Devices

Virtio CNF (Fwd) Packet Generator

Figure: Abstract Testbed

9/20

Evaluation Design
4 Our Study

+PC (P&C State Enabled)
p
CPU C States Support (enabled)

p
Speed Step Technology

(enabled)
p
Turbo boost technology (enabled)

p
Speed shift

Technology (enabled)
p
Thermal Velocity Boost Voltage

Optimizations (enabled)

�PC (P&C State Disabled)
⇥ CPU C States Support (disabled)⇥ Speed Step Technology
(disabled)⇥ Turbo boost technology (disabled)⇥ Speed shift
Technology (disabled)⇥ Thermal Velocity Boost Voltage
Optimizations (disabled)

Hardware Virtualization (+PC /�PC)
⇥ VT-d (disabled) ⇥ SR-IOV (disabled)

Others
p
Variable packet sizes

p
Variable packet ratesp

Simple l2 forwarding with mac swap of UDP packets

10/20

Testbed
4 Our Study

 (a) Loopback

eth0.1 eth0.2

Tester

MoonGen
(Traffic generator on bare-metal)

Figure: Testbed
11/20

Testbed
4 Our Study

(DPDK)
vSwitch

Host Kernel

 (a) Loopback

eth0.1 eth0.2

Tester

eth1.2eth1.1

 (b) Baremetal
DuT

MoonGen
(Traffic generator on bare-metal)

40GbE

UDP Traffic

Figure: Testbed
11/20

Testbed
4 Our Study

(DPDK)
vSwitch

Host Kernel

 (a) Loopback

eth0.1 eth0.2

Tester

eth1.2eth1.1

 (b) Baremetal
DuT

MoonGen
(Traffic generator on bare-metal)

Container/App
(DPDK)

 vhost

virtio

Shared unix socket 1

Shared unix socket 0

veth0 veth1

40GbE

UDP Traffic

 (c) Containerized

vSwitch

Figure: Testbed
11/20

Table of Contents
5 Results

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

12/20

Throughput
5 Results

64-800 ! BNF(+PC)⇡ BNF(-PC)> CNF(+PC)> CNF(-PC)
800-1500! BNF(+PC)⇡ BNF(-PC)> CNF(-PC)⇡ CNF(+PC)

! BNF(±PC)⇡ LIMIT(40GbE)
*BNF: Baremetal Network Function

64-800 ! CNF(+PC)> CNF(-PC)
! Saturation: High Packet Rate

800-1500! CNF(-PC)⇡ CNF(+PC)
! Saturation: High Data Rate

12/20

Latency and Jitter: CNF at 100 Kpps
5 Results

+PC : Latency (#) Jitter (") �PC : Latency (") Jitter (#)

13/20

Latency and Jitter: BNF at 100 Kpps
5 Results

+PC /�PC : Latency (') Jitter (')
BNF! Latency < CNF! Latency
BNF! Jitter < CNF! Jitter

14/20

Latency and Jitter: CNF at Max Incoming Rate
5 Results

+PC /�PC : Latency(Unusable ") Jitter(Unusable ")

15/20

Latency and Jitter: BNF at Max Incoming Rate
5 Results

+PC : Latency (") Jitter (") �PC : Latency (#) Jitter (#)

16/20

Analysis
5 Results

Findings
1. The default implementation of CNF is not suitable for latency-sensitive NF.
2. DPDK shines in baremetal and is capable of high throughput and low latency with
predictable jitter.

3. Introduction of vNet I/O in CNFs!Might be the Culprit for poor performance

17/20

Table of Contents
6 Conclusion

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

18/20

Conclusion and Future Work
6 Conclusion

• Found CNFs are more prone to system settings than baremental NF.
• Needs further study towards the explainability of performance variations.

Future Direction
• Explain the observed performance disparity in CNFs through further analysis and
instrumentation.

• Develop a better and improved version of vNet I/O.

18/20

CPU Probing using RD-TSC [Ongoing]
6 Conclusion

• Q2. Why does CNF suffer from poor performance compared to bare-metal NF?
— RO2.1. To determine the network component in the CNF architecture causing the bottleneck.

• Need tomeasure the performance of networking
components of Virtio and find the performance
bottleneck with a low overhead method like reading
TSC counter of CPU (RD_TSC).

• Propose a solution to address the bottleneck.
• Conduct combinational experiments to narrow down
the effect of P&C states further.

(DPDK)
vSwitch

Host Kernel

eth0.1 eth0.2

Tester

eth1.2eth1.1

DuT

MoonGen
(Traffic generator on bare-metal)

Container/App
(DPDK)

veth0 veth1

40GbE

UDP Traffic

vSwitch Rx

Rx
Fwd Tx

Fwd

Tx Rx

Tx

FwdC
N

F
V

ho
st

-u
se

r

19/20

Table of Contents
7 Contributions

I Introduction

I CPU Configuration and CNF

I Our Study

I Results

I Conclusion

I Contributions

20/20

Understanding CNF Perfromance
7 Contributions

Key Points

• + P&C-State) Throughput " Jitter "

• Low Latency/Jitter ApplicationX
⇠ Packet Size⇥ Traffic Rate ⇠ CPU Configuration.

20/20

	Summary
	Introduction
	CPU Configuration and CNF
	Our Study
	Results
	Conclusion
	Contributions
	Appendix
	Appendix

