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Points
1 Summary

Goal

• Explore the latency, jitter, and bandwidth characteristics of CNFs.

Idea

• Focus on CPU Power and Frequency Scaling Configurations.

Result

• Insight for predictable low latency/jitter and high throughput.
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Compute Inter Connect for Beyond 5G
2 Introduction

 FPGA

CPU
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Figure: Compute-Inter-Connect platform with heterogeneous technologies.1

1
Chafii, M., Bariah, L., Muhaidat, S., & Debbah, M. (2023). Twelve scientific challenges for 6G: Rethinking the foundations of communications theory. IEEE Communications Surveys & Tutorials, 25(2), 868-904.

Note: The figure depicted here is a modified version taken from this publication.
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Evolving Network Functions
2 Introduction

Physical Network Functions (PNF) Virtual Network Function (VNF) Containerized Network Function (CNF)
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Figure: Evolving Network Functions
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Containerized Network Functions
2 Introduction

Why CNF?
1. Agility

• Lightweight • Fast spin-off time
2. Portability

• Open standards •Wide adoption
3. Resource efficiency
4. Supporting ECO-System
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Kubernetes: A distributed platform with
distinct control and data plane components
positioning itself as OS of the Cloud. 

. . .
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Figure: Container architecture and its orchestration.4/20



Network I/O Acceleration and Virtualization
2 Introduction
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Figure: Performance acceleration and vNet I/O technologies.

Why DPDK?
! Polling mode
! User space driver
! Core affinity
! Optimized memory
! Network virtualization
! Cloud native acceleration
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Why Focus on CPU P&C States?
3 CPU Configuration and CNF

P-States (Performance States)
p
Operating Frequency Control

p
Voltage Control

• Advantages
+ Dynamic performance scaling
+ Energy Efficiency
+ Thermal management

• Disadvantages
� Potential performance impact
� Transition latency

C-States (Idle States)
p
Turns off Parts of CPU

p
Manage Power Consumption

• Advantages
+ Power savings
+ Extended battery life
+ Reduced heat generation

• Disadvantages
� Wake-up latency
� Power management complexity
� Potential performance penalty
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CPU P&C State in CNF
3 CPU Configuration and CNF

Effect of P&C states on Container

• CPU behavior impacts container
performance.

• Dynamic frequency scaling!
Unpredictable process execution speed

• Idle CPUs take longer to wake up and
run processes.

Containerised
Application 1

Container Engine

Host OS

Hardware [CPU + ...]

CPU Configurations (P&C States)

Containerised
Application 1

Uses

Runs on

Manages

Figure: Relation between containerized application and CPU
P&C states.
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Goal
4 Our Study

Understand the correlation between CNF performance and P&C Sate of modern CPU.

Address the possibility of using CNF in latency-sensitive applications.
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Approach
4 Our Study

Exhaustive Experiments and Analysis
• 10 Experiments+ 152 Evaluations
• DPDK powered packet generation and
forwarding CNF

• + Variable packet sized
+ Variable packet rates
+±PC

• Real H/W Devices

Virtio CNF (Fwd)    Packet Generator

Figure: Abstract Testbed
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Evaluation Design
4 Our Study

+PC (P&C State Enabled)
p
CPU C States Support (enabled)

p
Speed Step Technology

(enabled)
p
Turbo boost technology (enabled)

p
Speed shift

Technology (enabled)
p
Thermal Velocity Boost Voltage

Optimizations (enabled)

�PC (P&C State Disabled)
⇥ CPU C States Support (disabled)⇥ Speed Step Technology
(disabled)⇥ Turbo boost technology (disabled)⇥ Speed shift
Technology (disabled)⇥ Thermal Velocity Boost Voltage
Optimizations (disabled)

Hardware Virtualization (+PC /�PC)
⇥ VT-d (disabled) ⇥ SR-IOV (disabled)

Others
p
Variable packet sizes

p
Variable packet ratesp

Simple l2 forwarding with mac swap of UDP packets
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Testbed
4 Our Study
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Figure: Testbed
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Testbed
4 Our Study
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Testbed
4 Our Study
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Figure: Testbed
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Throughput
5 Results

64-800 ! BNF(+PC)⇡ BNF(-PC)> CNF(+PC)> CNF(-PC)
800-1500! BNF(+PC)⇡ BNF(-PC)> CNF(-PC)⇡ CNF(+PC)

! BNF(±PC)⇡ LIMIT(40GbE)
*BNF: Baremetal Network Function

64-800 ! CNF(+PC)> CNF(-PC)
! Saturation: High Packet Rate

800-1500! CNF(-PC)⇡ CNF(+PC)
! Saturation: High Data Rate
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Latency and Jitter: CNF at 100 Kpps
5 Results

+PC : Latency (#) Jitter (") �PC : Latency (") Jitter (#)
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Latency and Jitter: BNF at 100 Kpps
5 Results

+PC /�PC : Latency (') Jitter (')
BNF! Latency < CNF! Latency
BNF! Jitter < CNF! Jitter
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Latency and Jitter: CNF at Max Incoming Rate
5 Results

+PC /�PC : Latency(Unusable ") Jitter(Unusable ")
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Latency and Jitter: BNF at Max Incoming Rate
5 Results

+PC : Latency (") Jitter (") �PC : Latency (#) Jitter (#)
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Analysis
5 Results

Findings
1. The default implementation of CNF is not suitable for latency-sensitive NF.
2. DPDK shines in baremetal and is capable of high throughput and low latency with
predictable jitter.

3. Introduction of vNet I/O in CNFs!Might be the Culprit for poor performance
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Conclusion and Future Work
6 Conclusion

• Found CNFs are more prone to system settings than baremental NF.
• Needs further study towards the explainability of performance variations.

Future Direction
• Explain the observed performance disparity in CNFs through further analysis and
instrumentation.

• Develop a better and improved version of vNet I/O.
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CPU Probing using RD-TSC [Ongoing]
6 Conclusion

• Q2. Why does CNF suffer from poor performance compared to bare-metal NF?
— RO2.1. To determine the network component in the CNF architecture causing the bottleneck.

• Need tomeasure the performance of networking
components of Virtio and find the performance
bottleneck with a low overhead method like reading
TSC counter of CPU (RD_TSC).

• Propose a solution to address the bottleneck.
• Conduct combinational experiments to narrow down
the effect of P&C states further.
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Understanding CNF Perfromance
7 Contributions

Key Points

• + P&C-State ) Throughput " Jitter "

• Low Latency/Jitter ApplicationX
⇠ Packet Size⇥ Traffic Rate ⇠ CPU Configuration.
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